
Multidimensional isotropic and anisotropic  q-oscillator models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 115

(http://iopscience.iop.org/0305-4470/29/1/013)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 115–124. Printed in the UK

Multidimensional isotropic and anisotropic q-oscillator
models

A Ghosh†, P Mitra† and A Kundu‡§
† Saha Institute of Nuclear Physics, Block AF, Bidhannagar, Calcutta 700 064, India
‡ Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany

Received 8 September 1995

Abstract. q-oscillator models are considered in two and higher dimensions and their symmetries
are explored. New symmetries are found for both isotropic and anisotropic cases. Applications
to the spectra of triatomic molecules and superdeformed nuclei are discussed.

1. Introduction

The q-deformed oscillator introduced recently [1] has spurred a great deal of activity.
Various aspects of the standard harmonic oscillator have been generalized to theq-
deformed case [2]. In addition to studies on models with a singleq-oscillator and its
successful application to different branches of physics [3–8], higher dimensional isotropic
and anisotropicq-oscillator models have also begun to be studied [9–11].

It is known that the generalization of harmonic oscillator toq-oscillator models becomes
a non-trivial problem in higher dimensions, even in the isotropic case. In [9] two such two-
dimensional isotropicq-oscillator models were proposed. However, only one of them was
really analysed, a more natural candidate being ignored. One of our aims is to reconsider this
important issue and show that this alternative model also exhibits an interesting symmetry.
Our main purpose however is to concentrate on the symmetries of the anisotropicq-oscillator
models in two and higher dimensions, which to our knowledge have not been explored
properly. It should be emphasized here that the symmetries of thestandard (q = 1)
anisotropic oscillators in two dimensions are well understood [12].

We derive our basic results first forSUq(N) with N = 2 and subsequently extend them
to higherN . We find interesting applications of our results to the vibrational spectra of
triatomic molecules as well as to the shell structure of superdeformed nuclei.

The plan of the paper is as follows. In section 2 we review ordinary oscillators, both
isotropic and anisotropic, so that it will be easier to make the transition toq-oscillators.
In section 3, we discuss isotropicq-oscillators and in section 4, anisotropicq-oscillators.
These two-dimensional studies are extended to three dimensions in section 5. Section 6
discusses some applications.

§ Permanent address: Saha Institute of Nuclear Physics, AF/1 Bidhannagar, Calcutta 700 064, India.
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2. Symmetries of standard oscillators

Let us begin by briefly discussing the ordinary isotropic oscillator model in two dimensions.
The Hamiltonian is given by

h =
2∑

i=1

{a†
i , ai} = (n1 + n2 + 1) (1)

whereni = a
†
i ai is the number operator anda†

i , ai (i = 1, 2) are ladder operators with
commutation relations

[ai, a
†
j ] = δij [ai, aj ] = 0 [ni, ai ] = −ai. (2)

‘Angular momentum operators’ may be constructed by the Schwinger representation

j+ = a
†
1a2 j− = a

†
2a1 j3 = 1

2(n1 − n2). (3)

They satisfy theSU(2) algebra and commute with the Hamiltonian which is related to the
Casimir operator:

jαjα = 1
4(h2 − 1).

This gives theSU(2) symmetry of the Hamiltonian (1).
Now we ask what happens when the ordinary oscillator model (1) is made anisotropic

giving the HamiltonianH ∝ ω1(n1 + 1
2) + ω2(n2 + 1

2). Of course there is no degeneracy
in general, but the spectrum becomes interesting when the frequenciesω1, ω2 are rational
multiples of each other. The Hamiltonian is then written as

H = 1

k1
(n1 + 1

2) + 1

k2
(n2 + 1

2) (4)

with ω1 : ω2 = k1
−1 : k2

−1, wherek1 and k2 are relatively prime integers. This simple
situation has been discussed in the literature [12]. In this anisotropic case in two dimensions
an SU(2) symmetry is involved again, though with a curious multiplicityk1k2 of copies
of each irreducible representation of the corresponding algebra. To explain the basic idea
behind such symmetries we first note that the reason why the operatorsj± commute with
the Hamiltonianh (1) is that they shift bothn1, n2 by unity but in opposite ways:

f (n1, n2)j± = j±f (n1 ± 1, n2 ∓ 1).

When we go on to the anisotropic Hamiltonian (4) we need ‘angular momentum operators’
which shift n1, n2 by different amounts:

f (n1, n2)J± = J±f (n1 ± k1, n2 ∓ k2). (5)

Note that the single-quantum shift operator eiP which may be associated with the standard
creation operator througha† = √

neiP shifts n by unity: f (n)eiP = eiP f (n + 1). We
construct in analogy a multi-quanta shift operator eikP and a corresponding multi-quanta
creation operatorA† = √

NeikP , whereN = [n/k], the integral part ofn/k, i.e.

n = Nk + r (0 6 r < k).
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The operatorsA, A† thus constructed, together with their number operatorN , satisfy the
usual oscillator algebra:

[Ai, A
†
j ] = δij [Ai, Aj ] = 0 [Ni, Ai ] = −Ai. (6)

Writing out the shift operators eikP = (n−1/2a†)k, one finally arrives at

A† =
√

N

(
(n − k)!

n!

)1/2

a†k. (7)

Note that these creation and annihilation operators depend on bothN andr apart from the
usual creation and annihilation operators, but the number operatorN is independent ofr.
These bosonic operators are the same as the generalized bosons introduced earlier in other
contexts [12]. With their help one may easily construct ‘angular momentum operators’ [12]
for the anisotropic case by direct analogy with the isotropic one:

J+ = A
†
1A2 J− = A

†
2A1 J3 = 1

2(N1 − N2) (8)

where the appropriateki are understood to be used in the construction ofAi from ai

(i = 1, 2). It may be noted that unlikeJ±, which depend on bothN and r apart from the
operatorsa, a†, J3 depends only onN .

Due to the validity of the bosonic commutation relations (6), the generators (8) provide
again a Schwinger type realization ofSU(2) and because of the modified shifts, they
commute with the Hamiltonian (4).

The usualSU(2) quantum numbers are given byJ = 1
2(N1 + N2), M = 1

2(N1 − N2)

and the energy can be written as

E(J, r1, r2) = 2J + r1 + 1
2

k1
+ r2 + 1

2

k2
. (9)

Thus the remaindersr1, r2 enter the expression for the energy here, which is not completely
determined byJ . These remainders can takek1 andk2 different values, respectively. Note
that if J , M, r1 and r2 are all specified thenn1, n2 and hence the states are fixed. Now
for given values ofr1, r2, the SU(2) quantum numbersJ, M can vary as usual and every
irreducible representation of the group occurs exactly once. By varyingr1, r2, one therefore
obtainsk1k2 copies of each irreducible representation ofSU(2). Thesek1k2 copies all have
different energy, as is clear from (9) above. Note that fork1 = k2 = 1 we recover the
isotropic case with only one copy of each irreducible representation. Higher dimensional
generalizations can be made by exploiting these ideas of two dimensions and lead to an
SU(N) symmetry. One interesting possibility should be noted here. If we regard the
different levels for a fixed value ofj as forming a bunch, the spread of energy values within
a bunch may be so large that the bunches overlap violating the level sequence. Whereas
in the isotropic case levels with higher values ofj have necessarily higher energies than
levels with lowerj , in the anisotropic caseE(J, r1, r2) exceedsE(J + 1

2, r ′
1, r

′
2) if

(r1 − r ′
1)

k1
+ (r2 − r ′

2)

k2
> 1.

This crossing of levels may be of interest in practical situations.
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3. Isotropic q-oscillator models

A q-oscillator involves theq-commutators [1]

aqaq† − qaq†aq = q−n [n, aq ] = −aq (2′)
where we takeq = eiα not to be a root of unity. One can use two independent sets of such
operators to construct generators

j
q
+ = a

q†
1 a

q

2 j
q
− = a

q†
2 a

q

1 j
q

3 = 1
2(n1 − n2) (3′)

satisfying theSUq(2) algebra [1]

[jq
+, j

q
−] = [2j

q

3 ]q [jq

3 , j
q
±] = ±j

q
±.

Here [x]q stands for(qx − q−x)/(q − q−1) = sinxα/ sinα.
A candidate [9] for the isotropicq-oscillator Hamiltonian is (1)itselfor itsq-deformation

h
q
I = [n1 + n2 + 1]q . (10)

All the generators of theSUq(2) algebra introduced above commute with the Hamiltonian
(10) and in fact with an arbitrary function ofn1 + n2 + 1. Thus, (1) itself, (10), or an
arbitrary function ofn1 + n2 + 1 andq, which reduces to (1) whenq goes to unity, can be
taken as the Hamiltonian for the isotropicq-oscillator. We shall refer to such Hamiltonians
as being of type I. Note that only the undeformed expression (or a linear function thereof)
can be expressed as a sum of two similar terms for the two individual oscillators. An
interesting property of such systems is that there are violations of the level sequence. This
is due to the fact that an inequalityn′ > n cannot guarantee the inequality [n′]q > [n]q ,
which holds only for small values ofn, n′ and α. For such values, the energy spectrum
is similar to the standard case. For higher values of these quantities, however, the energy
sequence is violated. The dependence of [n]q = sinnα/ sinα on the parameterα also gives
a bound|[n]q | < | sinα|−1, limiting the energy spectrum in a bounded range. Different
levels however will not coincide as long asq is not a root of unity.

There is a more natural choice for the Hamiltonian of the isotropic two-dimensional
q-oscillator. This is the sum of the Hamiltonians for two independentq-oscillators:

h
q
II =

2∑
i=1

{aq†
i , a

q

i } = [n1 + 1
2]q + [n2 + 1

2]q . (11)

As mentioned above, this model was briefly taken up in [4] where it was pointed out
that it does not commute with the generators (3′) of the SUq(2) algebra. We shall refer
to it as being of type II. Note that its spectrum has obvious degeneracies arising from the
permutibility of the twoq-oscillators. As we have restricted ourselves to the situation where
q is not a root of unity, there are in general no multiplets besides doublets (and singlets).
It turns out that the permutation symmetry may induce an interestingSU(2) or SUq(2)

symmetry in this spectrum, as can be seen in the following way. The algebra is made up
of the operators

j̃+ =
∞∑
i=0

∞∑
n=1

[i]q !

[i + n]q !
(j

q
+)n|i, i + n〉〈i, i + n|

=
∞∑
i=0

∞∑
n=1

|i + n, i〉〈i, i + n|

j̃− = j̃
†
+

j̃3 = 1
2

∞∑
i=0

∞∑
n=1

[|i + n, i〉〈i + n, i| − |i, i + n〉〈i, i + n|]. (12)
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Each term in the expansion of̃j+ projects out the state|i, i + n〉 and in view of the
representation (3′) and the relations

a
q

i |ni〉 = √
[n]q |ni − 1〉 a

q†
i |ni〉 = √

[n + 1]q |ni + 1〉

(j
q
+)n takes a state withn1 = i, n2 = i + n to a state withn1 = i + n, n2 = i by creating

n quanta of the first kind while destroying an equal number of quanta of the second kind.
Similarly terms ofj̃− act in the reverse way. These operators satisfy theSU(2) algebra,
which can be checked easily by direct calculation. They even satisfy theSUq(2) algebra.
This happens because the operatorj̃3 has only zero and one-half as eigenvalues as a result
of the easily verifiable property(j̃+)2 = (j̃−)2 = 0, and for these eigenvaluesSU(2) and
SUq(2) are identical. It can be checked easily that the above operators commute with
(5) and therefore the Hamiltonian can be said to have anSU(2) or SUq(2) symmetry.
However, this symmetry manifests itself only in doublets and singlets, in contrast to the
infinite variety of representations that is observed for theSU(2) symmetry of (1) and the
SUq(2) symmetry of (10).

4. Anisotropic q-oscillators

Let us go over to the anisotropicq-oscillator of type I. The HamiltonianHq
I in the isotropic

case obviously commutes with theSUq(2) generators introduced above, but an anisotropic
Hamiltonian

H
q
I =

[
1

k1
(n1 + 1

2) + 1

k2
(n2 + 1

2)

]
q

(13)

where k1, k2 are unequal positive integers having no common factor, doesnot do so.
However one finds that, much as before,q creation and annihilation operators may be
introduced through the unit quantum shift operator asaq† = √

[n]qeiP , and through the
multi-quanta shift operator asAq† = √

[N ]qeikP giving

A
q†
i = √

[Ni ]q

(
[ni − k]q !

[ni ]q !

)1/2

(a
q†
i )ki . (14)

Here, [n]q ! = [n]q [n − 1]q . . . [1]q andNi stands for the integral part already introduced in
the standard case. The operators (14) proposed recently [13] as generalizedq-bosons can
be used to construct generators

J
q
+ = A

q†
1 A

q

2 J
q
− = A

q†
2 A

q

1 J
q

3 = 1
2(N1 − N2) (15)

satisfying the sameSUq(2) algebra. It is interesting to note that the generatorsJ
q
±, J

q

3 thus
constructed commute with the HamiltonianHq

I . Therefore we conclude that anisotropic
type I q-oscillator model (13) exhibits again theSUq(2) symmetry as done by its isotropic
counterpart (10). Moreover, because of the splitting ofni/ki into its integral partNi and
the fractional partri/ki , exactly as before, there arek1k2 copies of each representation of
SUq(2). These copies have different energies as long asq is not a root of unity. Thus,
although the nonlinear expression for the energy may change the ordering of the levels
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from the standard situation, the degeneracies remain exactly the same as before with the
expression of energy given by

E
q
I (J, r1, r2) =

[
2J + r1 + 1

2

k1
+ r2 + 1

2

k2

]
q

. (9′)

Next we come to the case of anisotropicq-oscillators of type II. The Hamiltonian is
taken to be

H
q
II =

[
1

k1
(n1 + 1

2)

]
q

+
[

1

k2
(n2 + 1

2)

]
q

. (16)

By separating the integral and fractional parts as before, we can write this as

H
q
II =

[
N1 + 2r1 + 1

2k1

]
q

+
[
N2 + 2r2 + 1

2k2

]
q

. (17)

However, contrary to the isotropic case (11), this expression in general does not exhibit the
permutation symmetry under exchange ofN1 and N2, because of the fractions which are
different in the two terms. It is easy to see that these fractions can be equal only when
2ri + 1 = ki for i = 1, 2, i.e. only fixed values ofri determined by givenki can lead
to degenerate levels. Thus there is a very limited amount of degeneracy in the states of
this system and it occurs only if neitherki is even. When these restrictions onki and ri

are satisfied there occur doublets (and singlets) much as in the isotropic case of type II.
There is again anSU(2) or equivalentlySUq(2) symmetry underlying these multiplets. The
corresponding generators can be constructed as in (12) with only the replacement of the
generators (3′) by the anisotropic ones (15) having the properties

A
q

i |Ni〉 = √
[N ]q |Ni − 1〉 A

q†
i |Ni〉 = √

[N + 1]q |Ni + 1〉.
Thus in terms of the operatorsJ q

±, J
q

3 , introduced for the anisotropicq-oscillator of type I
and appropriate projection operators, we may write

J̃+ =
∞∑

I=0

∞∑
N=1

[I ]q !

[I + N ]q !
(J

q
+)N |I, I + N; r1, r2〉〈I, I + N; r1, r2|

=
∞∑

I=0

∞∑
N=1

|I + N, I ; r1, r2〉〈I, I + N; r1, r2|

J̃− = J̃
†
+

J̃3 = 1
2

∞∑
I=0

∞∑
N=1

[|I + N, I ; r1, r2〉〈I + N, I ; r1, r2| − |I, I + N; r1, r2〉〈I, I + N; r1, r2|].

(18)

Here the states are understood to be labelled by their quantum numbersN1, N2, r1, r2

with fixed valuesri = (ki − 1)/2. Repeating similar arguments it may be shown that the
operators introduced in (18) not only obey theSU(2) or SUq(2) algebra but also commute
with the Hamiltonian (16) and thus can be said to be responsible for the degeneracy of the
states. As in the case of the corresponding isotropicq-oscillator, only the spin one-half
(and zero) representations occur instead of the infinite variety observed for type I.
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5. Higher dimensional models

After this elaborate discussion of two-dimensional oscillators, its generalization to higher
dimensions does not pose any difficulty. For example, while the ordinary isotropic three-
dimensional oscillator with the HamiltonianH = n1 +n2 +n3 exhibits anSU(3) symmetry
with certain irreducible representations (the symmetric tensor ones) occurring exactly once,
the anisotropic HamiltoniañH = (n1/k1)+ (n2/k2)+ (n3/k3) leads to anSU(3) with each
of the above representations occurringk1k2k3 times, the integerski being assumed to contain
no overall common factor. Just as the generators of the algebra in the isotropic case can
be written asa†

1a2, a
†
2a3, a

†
1a3, their conjugates and the elements of the Cartan subalgebra

1
2(n1 − n2),

1
2(n2 − n3), in the anisotropic case one replacesai , ni by Ai , Ni defined with

the appropriateki involved in the Hamiltonian. Repetition of multiplets occurs because the
energy contains a new piece(r1/k1) + (r2/k2) + (r3/k3), whereri varies from 0 toki − 1.

Apart from the possibility of overlapping bunches already seen in the case of two
dimensions, a new pecularity may appear here. As there are severalki ’s, it may so happen
that, although there is no overall common factor between them, some of them possess some
common factor. In that case, there will exist different multiplets with equal energies. For
instance, ifk1 = 4, k2 = 2, k3 = 1, the copies of any multiplet withr1 = 2, r2 = 0 and
r1 = 0, r2 = 1 will have equal energies. Thus the symmetry generators donot connect all
states having the same energy.

More generally, in theν-dimensional case, the anisotropic HamiltonianH̃ = ∑ν
1 ni/ki

leads to
∏ν

1 ki copies of each irreducible representation ofSU(N) observed in the isotropic
case. It is assumed here that theki ’s are integers containing no overall common factor. The
peculiarities occurring in the lower dimensional cases can of course occur here as well.

Similarly such higher dimensional cases can be considered withq-deformations leading
to an SUq(N) symmetry in both the isotropic and anisotropic cases. The construction of
symmetry operators in the anisotropic case is analogous to the undeformed situation; as in
the two-dimensional case, the bosonic operators should be replaced by theirq-deformations.

For the three-dimensionalq-oscillator of type II one may take the generators as

j̃12 =
∞∑
i=0

∞∑
n=1

∞∑
n3=0

|i + n, i, n3〉〈i, i + n, n3|

j̃13 =
∞∑
i=0

∞∑
n=1

∞∑
n2=0

|i + n, n2, i〉〈i, n2, i + n|

j̃3 = 1
2

∞∑
i=0

∞∑
n=1

∞∑
n3=0

[|i + n, i, n3〉〈i + n, i, n3| − |i, i + n, n3〉〈i, i + n, n3|] (19)

and so on with the propertỹj2
ij = 0.

6. Some physical applications

The three-dimensional generalization of the type I model has interesting physical
applications. The Hamiltonian in this case is

H
q
I =

[
1

k1
(n1 + 1

2) + 1

k2
(n2 + 1

2) + 1

k3
(n3 + 1

2)

]
q

. (20)
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The generalizedSUq(3) generators are given by

J
q

12 = A
q†
1 A

q

2 J
q

13 = A
q†
1 A

q

3 J
q

3 = 1
2(N1 − N2) (21)

and so on. The Hamiltonian exhibitsSUq(3) symmetry with a spectrum containingk1k2k3

copies of each symmetric tensor representation ofSUq(3). Consideringα to be small, we
expand (20) as

H
q
I ≈

(
1 + α2

3!

)
H − α2

3!
H 3 (22)

whereH , theq = 1 part of (20), is given by

ωH = ω1(n1 + 1
2) + ω2(n2 + 1

2) + ω3(n3 + 1
2) (23)

with zero-order frequenciesωi corresponding to its normal modes. We find that there exists
an interesting connection between our model and the spectra of triatomic molecules as
well as superdeformed nuclei. Though there exist a number of investigations showing the
agreement ofq-oscillator models with the experimentally observed vibrational and rotational
spectra of some diatomic molecules with surprising accuracy [5, 6], similar studies on
triatomic molecules are scarce, and, even when available, are restricted to the isotropic
case [10]. On the other hand, the Hamiltonian (20) and hence (22) for smallq-values can
possibly be applied to explain vibrational spectra of a class of real triatomic molecules with
the inclusion of anharmonicity along with the anisotropy given in rational ratios. That is,
for triatomic molecules with normal modes in the ratios

ω1 : ω2 : ω3 = ε1n1 : ε2n2 : ε3n3

where theni ’s are integers whileεi ’s are numbers close to unity showing deviations from
rational ratios. For example, our model is expected to describe the vibrational spectra of
molecules such as [15]:

(1) HOCl, with zero-order frequencies (in cm−1)

ω1 = 3609 ω2 = 1238 ω3 = 720 (24a)

in the ratioω1 : ω2 : ω3 ≈ 5 : 2 : 1 with accuracy

ε1 = 1.00 ε2 = 0.86 ε3 = 1.00. (24b)

(2) HDO, with zero-order frequencies (in cm−1)

ω1 = 2724 ω2 = 1403 ω3 = 3707 (25a)

in the ratioω1 : ω2 : ω3 ≈ 2 : 1 : 3 with accuracy

ε1 = 0.97 ε2 = 1.00 ε3 = 0.88. (25b)

(3) H2O, with zero-order frequencies (in cm−1)

ω1 = 3825.3 ω2 = 1653.9 ω3 = 3935 (26a)
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Table 1. Energy spectrumE = ωH
q
I , whereH

q
I is as in (22) withα = 0.0849. E(anh-q)

andE0 give the values with and without consideration of the anharmonicity, whileE(exp) was
obtained from [15].

n1 n2 n3 E0 E(anh-q) E(exp)

0 0 0 4 707 4 701 4 680
0 1 0 6 361 6 340 6 295
0 2 0 8 015 7 968 7 871
1 0 0 8 531 8 473 8 419
0 0 1 8 643 8 583 8 524
0 3 0 9 669 9 581 9 408
1 1 0 10 185 10 081 10 102
0 1 1 10 297 10 190 10 121
0 4 0 11 323 11 177 10 906
1 2 0 11 839 11 671 11 746
0 2 1 11 951 11 778 11 678
2 0 0 12 355 12 162 12 075
1 0 1 12 467 12 269 12 107
0 0 2 12 580 12 376 12 277
0 5 0 12 977 12 752 12 365
1 3 0 13 493 13 239 13 351
0 3 1 13 605 13 345 13 197
2 1 0 14 009 13 724 13 825
1 1 1 14 121 13 829 13 771
0 1 2 14 233 13 934 13 855
1 4 0 15 146 14 783 14 917
0 4 1 15 259 14 887 14 676
2 2 0 15 662 15 259 15 537
1 2 1 15 775 15 363 15 396
0 2 2 15 887 15 466 15 393
3 0 0 16 178 15 733 15 645
2 0 1 16 291 15 836 15 605
1 0 2 16 403 15 938 15 702
0 0 3 16 516 16 041 15 937

in the ratioω1 : ω2 : ω3 ≈ 2 : 1 : 2 with accuracy

ε1 = 1.16 ε2 = 1.00 ε3 = 1.19. (26b)

For demonstrating our claim, we present here in detail the case of the water molecule.
The vibrational spectra of H2O molecules (without considering the anharmonicity) may be
described by the Hamiltonian (23) [14, 15] rewritten as

ωH = ω
(
ε1(n1 + 1

2) + ε2

2
(n2 + 1

2) + ε3(n3 + 1
2)

)
(27)

with ω = 3307.8 and εi as given in (26b). We see that our anisotropic model (20) for
k1 : k2 : k3 = 1 : 2 : 1 andq = 1 can describe this system with fairly good accuracy. The
system thus has an approximateSU(3) symmetry when anharmonic effects are neglected.

For describing the experimental result more accurately anharmonic terms are usually
considered and, for triatomic molecules like H2O, the number of such anharmonic parameters
is six. We show in table 1 that our single-parameterq-oscillator model can also describe
such anharmonic effects with good accuracy. The energy spectrum obtained from formula
(22) including anharmonicity is shown in the penultimate column of table 1. Note its close
resemblance with the spectrum of H2O given in the last column, which is calculated from
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the six-parameter fit of [15]. HereE(anh-q) is a singleparameter fit, whereα = 0.0849 is
chosen to get the best fit with the six-parameter result within the given range.

This suggests that the vibrational Hamiltonian of H2O molecules with anharmonicity
exhibits an approximateSUq(3) symmetry (withq = ei0.0849) along with all the interesting
features of the anisotropicq-oscillator model discussed here.

As another possible application, one should mention that in analysing the shell structure
of superdeformed nuclei one usually considers the energy spectrum [16]

E(n1, n2, n3) = h̄ω⊥(n1 + n2 + 1) + h̄ω3(n3 + 1
2). (28).

The major shell structure is observed only whenω⊥ and ω3 are in the ratios of small
integers. The reason behind this fact and the symmetry involved are not well understood,
as stressed by Mottelson [16]. We see here that such superdeformed nuclear models with
nonlinear terms may well be represented by our anisotropicq-oscillator with anSUq(3)

symmetry, which may be a preferred symmetry providing a stable structure.
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